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Abstract

Endemic to the Democratic Republic of the Congo (DRC), monkeypox is a zoonotic disease

that causes smallpox-like illness in humans. Observed fluctuations in reported cases over

time raises questions about when it is appropriate to mount a public health response, and

what specific actions should be taken. We evaluated three different thresholds to differenti-

ate between baseline and heightened disease incidence, and propose a novel, tiered algo-

rithm for public health action. Monkeypox surveillance data from Tshuapa Province, 2011–

2013, were used to calculate three different statistical thresholds: Cullen, c-sum, and a

World Health Organization (WHO) method based on monthly incidence. When the observed

cases exceeded the threshold for a given month, that month was considered to be ‘aber-

rant’. For each approach, the number of aberrant months detected was summed by year—

each method produced vastly different results. The Cullen approach generated a number of

aberrant signals over the period of consideration (9/36 months). The c-sum method was the

most sensitive (30/36 months), followed by the WHO method (12/24 months). We conclude

that triggering public health action based on signals detected by a single method may be

inefficient and overly simplistic for monkeypox. We propose instead a response algorithm

that integrates an objective threshold (WHO method) with contextual information about epi-

demiological and spatiotemporal links between suspected cases to determine whether a

response should be operating under i) routine surveillance ii) alert status, or iii) outbreak sta-

tus. This framework could be modified and adopted by national and zone level health work-

ers in monkeypox-endemic countries. Lastly, we discuss considerations for selecting

thresholds for monkeypox outbreaks across gradients of endemicity and public health

resources.
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Author summary

Most of the scientific literature about statistical thresholds for outbreak detection is biased

toward large datasets that derive from wealthy countries. In the scientific community, it is

acknowledged that even objectively determined statistical thresholds can produce varied

results when applied to the same dataset, but to date, no study has evaluated thresholds for

rare but endemic diseases such as monkeypox. We applied three statistical thresholds to a

monkeypox surveillance dataset from the Democratic Republic of the Congo (DRC) to

identify periods of elevated disease incidence. Each threshold produced markedly differ-

ent results in terms of the number of aberrant months detected. We conclude that thresh-

olds alone are insufficient to determine when a public health response should be triggered

to monkeypox, and instead propose a novel algorithm that combines the use of an objec-

tive threshold with contextual information about social and epidemiological links between

cases. Similar approaches could be valuable when applied to other, rare tropical infectious

diseases where data are limited.

Introduction

Nearly forty years after the successful eradication of smallpox, monkeypox virus continues to

lurk in the tropical forests of Central and West Africa. Causing a smallpox-like illness, human

monkeypox was first described in 1970 in the Democratic Republic of the Congo (DRC), and

is widely regarded as the world’s most important extant orthopoxvirus. Following initial trans-

mission from an animal source, human-to-human transmission is known to occur [1], and

outbreaks outside of its natural endemic range (South Sudan in 2006 [2], United States in 2003

[3]) have raised concerns about its epidemic potential. Although monkeypox is rare, many

African ministries of health regard it as a disease of public health importance due to both its

clinical severity and potential for transboundary spread.

In the DRC, human monkeypox is a mandatory reportable disease and has been designated

by the government as one of 17 priority diseases. In the national surveillance system, all sus-

pected cases are formally reported from 26 provinces (consisting of 519 health zones) to

regional and national authorities. Current policy dictates that for each suspected case, a com-

prehensive response should be set in motion including a case investigation, specimen collec-

tion and laboratory testing, patient isolation, contact tracing, and community education. In

practice, however, this rarely occurs. Healthcare workers are not adequately trained in case

recognition, and in the face of limited resources and competing public health priorities, cases

often go uninvestigated.

In response to these challenges, the DRC Ministry of Health and the Kinshasa School of

Public Health in collaboration with the US Centers for Disease Control and Prevention (CDC)

established an Enhanced Monkeypox Surveillance System in Tshuapa Province in 2010, which

provided dedicated resources for case detection and confirmation. This resulted in a steady

flow of cases that were investigated, as well as increased accuracy of case detection. A next step

in the development of the system is to objectively and meaningfully distinguish between back-

ground levels of disease and abnormally high case counts (i.e., outbreaks). Currently ‘out-

breaks’ are declared only when public health officials observe what they believe to be

meaningful increases in case counts.

One of the tenants of epidemiologic surveillance is the timely detection of cases, yet

resource limitations in endemic areas of the DRC hinder efforts aimed at rapid case confirma-

tion and public health response. For example, complications associated with specimen
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transport (e.g., fuel shortages, limited flights) to the national laboratory in Kinshasa cause

notable delays in diagnostic testing. Personnel turnover results in an inability to retain local

healthcare workers trained in the recognition of clinical symptoms. These setbacks often trans-

late to delayed interventions or even missed opportunities for disease prevention. With this

in mind, are there objective criteria that could be leveraged to rapidly indicate a significant

aberrance in case counts? And are there lessons from monkeypox that we can broadly apply to

other rare diseases?

Establishing meaningful statistical thresholds for defining ‘outbreaks’ of disease may offer a

solution, by objectively signaling to authorities when it is appropriate to respond to an increase

in the number of observed cases. Here, we evaluate three statistical thresholds for defining out-

breaks of monkeypox, propose an innovative algorithm for a public health response, and dis-

cuss the implications of using such techniques for monkeypox and other diseases.

Methods

Study area

Tshuapa Province is located in the Congo Basin of the DRC. It is a region with severe poverty

where less than 50 physicians service a population of ~1.6 million people. In the absence of

large-scale agricultural production, the population relies heavily on bushmeat as a steady

source of protein [4]. There is no running water, and electricity is available only by generators.

Fuel is expensive and shipped by barge to Tshuapa Province, and there are often shortages

attributable to delays in shipment. This forested region has little in the way of transportation

infrastructure. Public health activities are also subject to these barriers, impeding travel to

rural communities in order to conduct investigations.

Surveillance system

In the broader national surveillance system, weekly notifications of suspect monkeypox cases

are delivered from local health areas to the health zone, then to the provincial and national

levels. These data consist of monkeypox case counts and deaths by health zone aggregated by

sex and age group. Suspect cases of monkeypox are typically identified when sick patients

present to health centers. Alternatively, health care workers also may identify suspect cases in

the field when conducting other health-related activities such as vaccination campaigns.

Although the data reported through the national system are not detailed, notifications can

lead to more rigorous epidemiological investigations and may help to generate signals of

aberrance.

In the enhanced system in Tshuapa Province, healthcare workers investigate suspect cases

which meet the following case definition: “vesicular or pustular eruption with deep-seated,

firm pustules and at least one of the following symptoms: fever preceding the eruption, lymph-

adenopathy [inguinal, axillary, or cervical], and/or pustules or crusts on the palms of the hands

or soles of the feet” [5]). Once a case is identified, a monkeypox-specific case report form is

completed and at least two lesion specimens are collected. Specimens are sent to the Institute

National de Recherche Biomédicale (INRB) in Kinshasa for testing, and the additional original

specimens and an aliquot of DNA is sent to CDC for independent confirmatory testing. Case

investigation and laboratory data are digitized, merged, and subsequently cleaned for analysis.

Since 2010, three formal workshops for healthcare workers have been conducted, regular

supervision visits have occurred, and community outreach activities have been carried out to

educate locals on preventive measures and encourage patients to visit to healthcare centers.

Thresholds for monkeypox outbreak detection
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Comparison of response thresholds

Investigated suspect case counts from Tshuapa Province from 2010–13 (the most recent period

for which cleaned, validated data are available) were used to calculate presumptive thresholds

based on monthly incidence for the years 2011–2013. Although data for confirmed cases are

available, we focused on suspect case counts because such data only would be available to pub-

lic health officials in the context of timely warning system for monkeypox.

We followed Hay et al (2002) to evaluate three methods; Cullen, c-sum, and a World

Health Organization (WHO) method, all initially developed for epidemic detection of

malaria [6]. The Cullen method is typically calculated by averaging the number of cases per

month for the past three years and adding 1.96 times the standard deviation, thereby con-

structing the 95% upper confidence limit for cases [7]. Our limited data meant having a

much lower probability of identifying extreme observations. Therefore, we modified this

approach to identify the upper 70% of observations (mean + 1.036�SD). The cumulative sum

(c-sum) method relies on the construction of a “base year” by averaging case counts for the

month of interest with estimates from the previous and subsequent months [8–10]. The

threshold itself is then calculated by computing a ratio of current to past cases, where ratios

exceeding one represent unusual increases in disease incidence. Lastly, the WHO method

uses the upper 3rd quartile of data from past cases to identify elevated instances of case counts

based on retrospective monthly case data [11]. With this approach, quartiles are defined as

follows: quartile 0 is smallest observed case count in the dataset, quartile 1 is the second low-

est, quartile 3 is the second highest, and quartile 4 is highest observation in the dataset. The

threshold is crossed when the number of observed cases for the current month exceeds the

second highest observation for that month based on retrospective data. For each year the

thresholds were calculated, we included all available past data in addition to data for the cur-

rent year. For example, to generate thresholds for the year 2013, we relied on incidence esti-

mates for 2010, 2011, 2012, and 2013. A WHO threshold was not calculated for the year 2011

because of insufficient data.

The Cullen and c-sum methods rely on calculation of the arithmetic mean, which is a valid

measure of central tendency for normally distributed data. We tested for non-normality with

Shapiro-Wilk tests to evaluate whether raw case counts or log-transformed data should be

used for these approaches.

When the observed cases exceeded the threshold for a given month, that month was consid-

ered to be an ‘aberrant’ month. Thresholds were then compared by summing the number of

aberrant months for each year and method. We also made month-by-month comparisons to

determine whether each method identified the same months as being irregular. Finally, we

consider key qualitative characteristics of each threshold (ease of calculation, resources

required for calculation).

Results

Baseline data

Observed case counts ranged from a minimum of 6 cases (May and June 2011) to a maximum

of 59 cases (May 2013), with a mean of 26.4 cases per month across all three years (SD = 15.6).

The overall number of observed suspected cases was highest in 2013 (mean = 34.4, SD = 17.3)

in comparison with the previous two years (2011 mean = 18, SD = 13.9; 2012 mean = 26.8,

SD = 11.6). We found little evidence of skewness in the data, and, therefore relied on the raw

data for the calculation of the c-sum and Cullen methods (Shapiro-Wilk tests p> 0.1, with the

exception of cases counts for the month of August, W = 0.75, P< 0.0001).

Thresholds for monkeypox outbreak detection
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In 2011, the highest case counts were observed in March, followed by the period August

through December (Fig 1). Data from 2012 showed a distinct pattern: although there were also

high case counts in March, suspected cases for January-February and April-June were notably

higher. A second peak in case counts was observed in August-September. In 2013, the period

April through July demonstrated increased observed suspected cases, followed by a decline

until an upsurge in October. When averaging across all three years of data, monthly case

counts were highest during the months of March through June (3-month average = 108.7),

and lowest in July (53), followed by November-February (4-month average = 61.8).

Comparison of findings by method

The Cullen method produced the highest threshold values, and accordingly detected the least

number of aberrant signals over the period of consideration (9/36 months or 25%). In contrast,

the c-sum method resulted in the lowest cut-off values overall, and was the most sensitive

approach, resulting in 30/36 aberrant months (83%). The WHO method resulted in 12/24

aberrant months (50%).

In 2011, only c-sum resulted in detection of aberrant months (all months except February

and April); the Cullen approach did not detect any aberrant months. In 2012, congruence

across all methods was observed for the months January, February, April, May, and June (50%

agreement, out of 10 total aberrant months across all methods). Agreement was observed in

40% of months (4/10) in 2013 (April, May, June, and July) (Fig 2). Although some months

were consistently deemed abnormal by all three methods across all years (30%, 9/30 aberrant

months), there was no discernable seasonal pattern.

Ease of calculation by method

The WHO approach involves the most straightforward calculation that could easily be calcu-

lated by hand, advantageous when limited resources (human or computational) are available

(Table 1). The Cullen and c-sum methods, in contrast, may require log-transformations on

non-parametric data; this may be cumbersome in areas where computers are less accessible.

The Cullen method could be performed using Microsoft Excel. C-sum involves the most

Fig 1. Suspected monkeypox cases in Tshuapa Province, 2011–2013. Case counts by epidemic week (A) and cumulative case counts (B) for

the study years. Under the current operational scheme, health care workers anecdotally note when there is an unexpected increase in cases

without systematically considering past case counts.

https://doi.org/10.1371/journal.pntd.0007034.g001

Thresholds for monkeypox outbreak detection

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0007034 December 20, 2018 5 / 12

https://doi.org/10.1371/journal.pntd.0007034.g001
https://doi.org/10.1371/journal.pntd.0007034


complex calculation, requiring averaging of case counts from several months, in addition to

the calculation of a ratio of past to present months. The latter method could also be calculated

in Excel, but would require a more in-depth understanding of data manipulation.

Discussion

Response thresholds for monkeypox

The true reservoir of monkeypox remains a mystery, and data generated through epidemio-

logic surveillance are among the few tools available to address lingering questions about its

Fig 2. Aberrant months detected by method, 2011–2013. Aberrant months are indicated by shaded blocks for each month:

Cullen (light grey), WHO (hatching), and c-sum (black). The WHO method was not applied to 2011 suspected monkeypox

case counts due to insufficient historical data.

https://doi.org/10.1371/journal.pntd.0007034.g002

Table 1. Summary of methods.

WHO Cullen C-sum

Calculation xn-1

Where,

x = the highest observed number of cases for

a given month, over the course of several years

μ + 1.036�σX
Where,

μ = the mean number of cases for a

given month

σ = the standard deviation of cases

for a given month

xn/((in-1 + in + in+1)/I)
Where,

x = the number of cases for a given month for

the current year

i = the number of cases for a given month for

past years

I = the number of months considered (i.e., 3

months)

Complexity of

calculation

Easy Medium Difficult

Resources required

for calculation

Could be computed by hand Log-transformation much easier with

statistical software or spreadsheet

Log-transformation and moving window much

easier with statistical software or spreadsheet

Sensitivity Moderately sensitive Least sensitive Most sensitive

Best application • Resource-constrained settings

• Small datasets

• Rare disease

• Larger datasets (>30 observations/

time unit)

• Non-rare endemic disease

• Larger datasets (>30 observations/time unit)

• Datasets with temporal stochasticity

Each of the three thresholds are evaluated on the basis of ease or complexity of calculation, resources required for calculation, and sensitivity.

https://doi.org/10.1371/journal.pntd.0007034.t001
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transmission dynamics in humans and in nature. Still, the scientific literature about surveil-

lance algorithms is biased toward the reporting of rare diseases in developed nations, with data

most commonly aggregated at weekly timescales [6, 8, 12–16]. Because these approaches are

unsuitable for remote regions where electricity is scarce and data are often stored on paper

forms, in this analysis we intentionally evaluated only thresholds that are relatively straightfor-

ward to calculate and conceptually easy to understand.

The WHO method is the most intuitive of the three methods considered, but in contrast to

c-sum, it is hypersensitive to variation in case counts between months. WHO therefore might

be most relevant for rare diseases with low baseline case counts (small datasets) for which the

mean as a measure of central tendency is untenable. The Cullen method, however, does utilize

the calculation of the mean, and so is most suitable for larger datasets (>30 units/time unit).

As the least sensitive approach, Cullen might be advantageous for identifying extreme

instances of elevated cases counts for diseases that are typically rare, but that sometimes result

in explosive outbreaks (e.g., measles). Lastly, the c-sum approach relies on the averaging of

case counts from the previous and successive months, resulting in a ‘smoothing’ effect on the

data. In essence, this allows for detection of aberrant events when monthly case counts fluctu-

ate because of either biological stochasticity or systematic unreliability. As an example of the

former, periodicity in monkeypox case counts might occur because of fluctuations in climatic

variables, which in turn influence host populations and contact patterns between humans and

nonhuman reservoirs. Alternatively, surveillance systems themselves may also experience

momentary disequilibrium. In Tshuapa, tireless health care workers are at times shifted from

regular activities to attend to immediate demands of (for example) childhood vaccination

campaigns or trainings, and, thus, are not available for monkeypox surveillance work. Such

changes in workforce are known to have affected the intra-annual variation in the present

data.

Similar to previous findings [6], each threshold produced markedly different results. Which

then is the most reliable or appropriate for identifying monkeypox outbreaks in Tshuapa Prov-

ince? Some insight is offered by the tiered approach proposed in the Integrated Disease Sur-

veillance Response (IDSR) guidelines for diseases like polio and measles: an alert threshold

first prompts further investigation/intervention beyond routine surveillance to verify the

occurrence of an abnormal situation, and a second epidemic threshold then triggers more

forceful action such as contact tracing and community education [17].

For countries where human monkeypox occurs routinely, we propose an algorithm that

integrates this tiered approach with objective thresholds (Fig 3). The WHO method (upper

3rd quartile of data, defined as the second highest observation) is the trigger for the first of

these levels due to its ease of calculation and intuitiveness. Public health workers at the

health zone level in the most remote parts of the region can rapidly calculate this threshold.

Once the threshold has been crossed and an alert status declared, health zone authorities

then direct local healthcare workers to investigate the temporal and the geographical delimi-

tation of the problem, and establish whether there are epidemiological links between cases.

For example, cases occurring within a similar timeframe (within one month), in a similar

geographic region (within 100km), and where there is evidence of social and/or epidemio-

logical links between cases (e.g., family members or bushmeat obtained from the same

source). If at least two of these criteria are satisfied, more intensive action may be necessary

including contact tracing, community education, and healthcare worker trainings. At

this point, consideration could be made for assistance and mobilization of resources, stem-

ming from either within the country (e.g., Ministry of Health) or from international sources

[18].

Thresholds for monkeypox outbreak detection
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Fig 3. Proposed monkeypox response algorithm in Democratic Republic of Congo. We propose a novel algorithm

consisting of three tiers: routine surveillance, an alert status, and an outbreak status. Elevation from routine

surveillance to an alert status occurs when the WHO threshold is crossed, defined as the second highest number of

cases per month for a given health zone. At this point, health care workers must investigate further to determine

whether there are spatiotemporal or epidemiological links between observed cases. If yes, an outbreak status is

declared, possibly entailing contact tracing, community education and request for external assistance, in addition to

routine surveillance activities.

https://doi.org/10.1371/journal.pntd.0007034.g003
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Considerations for MPX response thresholds in different settings

The intensity of disease detection and response is driven by both the burden of disease and

availability of public health resources, which could be measured by detected cases and per cap-

ita domestic expenditure on health, respectively [19] (Fig 4). In a high-endemicity and low-

resources setting, simple thresholds are preferred. A costly surveillance system can do more

harm than good by unintentionally forcing health care workers to spend salaried time collect-

ing, cleaning, and analyzing data, drawing them away from their regular duty to treat sick

patients [20]. Response thresholds in this region, therefore, should satisfy the immediate need

to identify and contain outbreaks, possibly at the expense of sensitivity. Long-term invest-

ments in ongoing surveillance, healthcare worker education, and community education are

also important components of prevention.

When public health resources are ample and infrastructure more developed, an abundance

of well-trained data analysts offer the potential for development of complex and innovative

response algorithms that more precisely detect aberrant events. Similar to any endemic setting,

thresholds in this scenario should be developed with the motivation to halt disease transmis-

sion and invest in routine surveillance and education.

In low-endemicity settings, long transmission chains are rarely observed, rendering out-

break thresholds irrelevant—that is, a single case of monkeypox should be a sufficient alert sig-

nal. Instead, more consideration should be devoted to public health response activities like

Fig 4. Considerations for thresholds and response goals across gradients of endemicity and resources available for public health.

Thresholds for defining aberrant disease events are most relevant in the context of endemic disease; when disease is rare, contrastingly, a single

case can serve as an alarm. Response goals should be prioritized—the minimal goal is always to halt transmission, but when resources are

available and/or burden of disease is high, public health authorities should strive to improve surveillance and education. For monkeypox, high

endemicity and low resources are exemplified by Tshuapa Province, DRC. Nigeria might be an example of high burden of disease and ample

public health resources—recently confirmed monkeypox cases indicate frequent autochthonous transmission, but more data is required to

determine the true burden of disease. Nigeria is currently in the process of laying the groundwork for long-term monkeypox surveillance

programs—a major contrasting point with Tshuapa Province is better access to real-time case confirmation. Low monkeypox endemicity

might be exemplified by the high-resource Republic of the Congo (ROC) and low-resource Liberia or Sierra Leone. In this framework,

resources available for public health are defined as the general domestic health expenditures per capita.

https://doi.org/10.1371/journal.pntd.0007034.g004

Thresholds for monkeypox outbreak detection

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0007034 December 20, 2018 9 / 12

https://doi.org/10.1371/journal.pntd.0007034.g004
https://doi.org/10.1371/journal.pntd.0007034


containing transmission, targeted education for affected community members, and healthcare

worker trainings.

Limitations

We acknowledge some limitations of the analysis. First, the thresholds were developed under

the assumption of access to large retrospective datasets to reliably produce monthly case count

estimates, yet the data were limited to just three complete years. It would be valuable to repeat

this analysis for other DRC regions outside of Tshuapa Province, and when more data become

available for recent years. Secondly, over time, healthcare workers have improved at accurately

identifying cases; the predictive value positive for monkeypox cases improved markedly from

35% in 2012 to nearly 80% in 2013. Several research studies were also initiated in 2013 in three

health zones, influencing the ability of healthcare workers in these health zones to launch

investigations and correctly identify monkeypox cases. As a result, more aberrant months

were consequently detected in 2013 likely as an artifact of surveillance quality, rather than a

true increase in the observed number of cases. We are also unsure as to whether intra-annual

fluctuations in case counts are real and due to biological seasonality, or whether they could be

a result of more frequent reporting periods, when public health workers are present at their

health zones and not away for other work-related matters.

Conclusions

The proposed algorithm could be adopted throughout DRC, but carried out at the health zone

level. A pilot period could perhaps be first be implemented in Tshuapa Province, followed by

implementation in other monkeypox-endemic regions. Ideally, the response algorithm would

be integrated with similar algorithms for other rare but concerning diseases, such as Ebola–

trainings held at both the provincial and health zone levels could also help ensure both case

recognition and the standardization of the approach across regions.

Statistical thresholds cannot broadly be applied to different epidemiological and socioeco-

nomic contexts, as each scenario presents its own set of constraints. Consideration should be

given to the resources required for calculation, sensitivity, and appropriateness of the measure

in relation to underlying disease transmission dynamics (i.e., seasonality). Although we use

monkeypox data to explore objective thresholds for public health response, many of the lessons

drawn from this exercise could be more widely applicable to other rare, endemic diseases.
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